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This paper focuses on the dynamic behavior of functionally graded conical, cylindrical

shells and annular plates. The last two structures are obtained as special cases of the

conical shell formulation. The first-order shear deformation theory (FSDT) is used to

analyze the above moderately thick structural elements. The treatment is developed

within the theory of linear elasticity, when materials are assumed to be isotropic and

inhomogeneous through the thickness direction. The two-constituent functionally

graded shell consists of ceramic and metal that are graded through the thickness, from

one surface of the shell to the other. Two different power-law distributions are

considered for the ceramic volume fraction. The homogeneous isotropic material is

inferred as a special case of functionally graded materials (FGM). The governing

equations of motion, expressed as functions of five kinematic parameters, are

discretized by means of the generalized differential quadrature (GDQ) method. The

discretization of the system leads to a standard linear eigenvalue problem, where two

independent variables are involved without using the Fourier modal expansion

methodology. For the homogeneous isotropic special case, numerical solutions are

compared with the ones obtained using commercial programs such as Abaqus, Ansys,

Nastran, Straus, Pro/Mechanica. Very good agreement is observed. Furthermore, the

convergence rate of natural frequencies is shown to be very fast and the stability of the

numerical methodology is very good. Different typologies of non-uniform grid point

distributions are considered. Finally, for the functionally graded material case numerical

results illustrate the influence of the power-law exponent and of the power-law

distribution choice on the mechanical behavior of shell structures.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Thin and thick shells have been widespread in many fields of engineering because they give rise to optimum conditions for
dynamic behavior, strength and stability. These structures support applied external forces efficiently by virtue of their geometrical
shape. In other words, shells are much stronger and stiffer than other structural shapes. The vibration effects on shell structures
caused by different phenomena can be of serious consequence for their strength and safety. Therefore, an accurate frequency and
mode shape determination is of considerable importance for the technical design of these structural elements.
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As for many other shape kinds, conical, cylindrical shells and annular plates are very common structural elements. So,
the purpose of this paper is to study the dynamic behavior of these structures derived from shells of revolution.

There are various 2-D theories of thin shells, which are used to approximate the real 3D problem. In the last 50 years,
refined 2-D linear theories of thin shells have been developed including important contributions by Sanders [1], Flügge [2],
Novozhilov [3], Vlasov [4], Kraus [5], Leissa [6] and Niordson [7]. In these refined shell theories, deformation is based on the
Kirchhoff-Love assumption. Based on the Kirchhoff-Love shell theory, named classical shell theory (CST), many researches
analyzed various characteristics of thin conical shell structures [8–15].

Simple and accurate theories for thick shells have been developed [5,16–18]. With respect to thin shells, the thick shell
theories take the transverse shear deformation and rotary inertia into account. The transverse shear deformation has been
incorporated into shell theories by following the work of Reissner [19]. The present work is just based on the first-order
shear deformation theory. The geometric model refers to a moderately thick shell, and the effects of transverse shear
deformation as well as rotary inertia are taken into account. Several studies have been presented earlier for the vibration
analysis of such revolution shells and the most popular numerical tool in carrying out these analyses is currently the finite
element method [16–18]. The generalized collocation method based on the ring element method has also been applied.
With regard to the latter method, each static and kinematic variable is transformed into a theoretically infinite Fourier
series of harmonic components, with respect to the circumferential coordinates [20–23]. In a panel, however, it is not
possible to perform such a reduction operation, and the 2-D field must be dealt with directly. In this paper, the governing
equations of motion are a set of five 2-D partial differential equations with variable coefficients. These fundamental
equations are expressed in terms of kinematic parameters and can be obtained by combining the three basic sets of
equations, namely balance, congruence and constitutive equations.

Referring to the formulation of dynamic equilibrium in terms of harmonic amplitudes of mid-surface displacements and
rotations, in this paper the system of second-order linear partial differential equations is solved without resorting to the
1-D formulation of the dynamic equilibrium of the shell. Now, the discretization of the system leads to a standard linear
eigenvalue problem, where two independent variables are involved. In this way, it is possible to compute the complete
assessment of the modal shapes corresponding to natural frequencies of panel structures. It should be noted that there is
comparatively little literature available for these structures, compared to literature on the free vibration analysis of
complete shells of revolution. Complete revolution shells are obtained as special cases of shell panels by satisfying the
kinematic and physical compatibility at the common meridian with W ¼ 0;2p.

As regards material advances, functionally graded materials (FGM) are a class of composites that have a smooth and
continuous variation of material properties from one surface to another and thus can alleviate stress concentrations found
in laminated composites.

In this study, ceramic–metallic graded shells of revolution with two different power-law variations of the volume
fraction of constituents in the thickness direction are considered. The effect of the power-law exponent and distribution
choice on the mechanical behavior of functionally graded shells is investigated. Some researchers analyzed various
characteristics of functionally graded structures [18,24–36]. However, this paper is motivated by the lack of studies found
in the literature addressing to the free vibration analysis of functionally graded conical, cylindrical shells and annular plates
and to the effect of the power-law distribution choice on their mechanical behavior.

The solution is obtained by using the numerical technique termed generalized differential quadrature (GDQ) method,
which leads to a generalized eigenvalue problem. The main features of the numerical technique under discussion are
illustrated in Section 3, while mathematical fundamentals and recent developments of the GDQ method as well as its major
applications in engineering are discussed in detail by Shu [37]. The solution is given in terms of generalized displacement
components of the points lying on the middle surface of the shell. Then, in order to verify the accuracy of this method,
numerical results for the isotropic and homogeneous material case will also be computed by using commercial programs.
Different typologies of grid point distribution are also considered, and their effect on solution accuracy is investigated. The
convergence and stability of some natural frequencies for the considered structures with different boundary conditions are
reported. For the worked out examples, the approximate solutions show good convergence characteristics and appear to be
accurate when tested by comparison with each other.

It can be pointed out that in this paper the numerical statement of the problem does not involve any variational
formulation, but deals directly with the governing equations of motion, which are directly transformed in one step to
obtain the final algebraic form. Moreover, a linear eigenvalue problem involving two independent variables over a 2-D
domain is solved. As shown in the literature [38–43], the GDQ technique is a global method, which can obtain very accurate
numerical results by using a considerably small number of grid points.
2. Basic governing equations

2.1. Shell geometry and kinematic equations

The geometry of shells considered hereafter is a surface of revolution. The notation for the coordinates is shown in Fig. 1
for a generic conical shell. The coordinates along the meridional and circumferential directions are x and s, respectively. a is
a semi-vertex angle of the cone while Rb is the shift of the axis x03 with reference to the axis of revolution x3. The distance of
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Fig. 1. Coordinate system of the shell: meridional section (a) and circumferential section (b).
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each point from the axis of revolution x3 is R0ðxÞ and j ¼ p=2� a is the angle between the normal to the shell surface n
and the axis x03. The total thickness of the shell is represented by h. The distance of each point from the shell mid-surface
along the normal is z.

The position of an arbitrary point within the shell material is known by the coordinates x ð0 � x � x0 ¼ L0= cos aÞ,
s ð0 � s � s0ðxÞ ¼ WR0ðxÞÞ upon the middle surface, and z directed along the outward normal n and measured from the
reference surface ð�h=2 � z � h=2Þ.

Rj and RW are, in general case, the radii of curvature in the meridional and circumferential directions, respectively. For a
cone surface we have Rj ¼ 1 and RW ¼ R0= sin j. The horizontal radius R0ðxÞ of a generic parallel of the shell represents
the distance of each point from the axis of revolution x3 and assumes the form:

R0ðxÞ ¼ Rb þ x sin a ¼ Rb þ x cos j (1)

The parametric coordinates (x, s) are defined on the meridional lines and on the parallel circles upon the middle surface of
the shell, respectively. It is worth noting that, by vanishing the semi-vertex angle a (a ¼ 0), we can reduce the formulation
of conical shells to that of cylindrical shells, while we can obtain the formulation of annular panels and plates, when
a ¼ p=2.

In developing a moderately thick shell theory we make certain assumptions. They are outlined below:
�

wh
The transverse normal is inextensible:

�n � 0
�
 Normals to the reference surface of the shell before deformation remain straight, but not necessarily normal after
deformation (a relaxed Kirchhoff-Love hypothesis).

�
 The transverse normal stress is negligible so that the plane assumption can be invoked:

sn ¼ snðx; s; z; tÞ ¼ 0

ere t is the time variable.
Consistent with the assumptions of a moderately thick shell theory, the displacement field assumed in this study is that of
the first-order shear deformation theory and can be put in the following form:

Uxðx; s; z; tÞ ¼ uxðx; s; tÞ þ zbxðx; s; tÞ

Usðx; s; z; tÞ ¼ usðx; s; tÞ þ zbsðx; s; tÞ

Wðx; s; z; tÞ ¼ wðx; s; tÞ (2)

where ux; us; w are the displacement components of points lying on the middle surface ðz ¼ 0Þ of the shell,
along meridional, circumferential and normal directions, respectively. bx and bs are normal-to-mid-surface rotations,
respectively. The kinematics hypothesis expressed by Eqs. (2) should be supplemented by the statement that the shell
deflections are small and strains are infinitesimal, that is wðx; s; tÞ5h.

It is worth noting that in-plane displacements Ux and Us vary linearly through the thickness, while W remains
independent of z. Relationships between strains and displacements along the shell reference (middle) surface z ¼ 0 are
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represented by the following:

�0
x ¼

qux

qx
; �0

s ¼
qus

qs
þ

ux cos j
R0

þ
w sin j

R0
; g0

xs ¼
qus

qx
þ
qux

qs
�

us cos j
R0

wx ¼
qbx

qx
; ws ¼

qbs

qs
þ
bx cos j

R0
; wxs ¼

qbs

qx
þ
qbx

qs
�
bs cos j

R0

gxn ¼
qw

qx
þ bx; gsn ¼

qw

qs
�

us sin j
R0

þ bs (3)

In the above, the first three strains �0
x ; �

0
s ; g0

xs are the in-plane meridional, circumferential and shearing components,
wx;ws;wxs are the analogous curvature changes. The last two components gxn; gsn are transverse shearing strains. The matrix
notation of the congruence equations assumes the aspect:

e ¼ Du (4)

where

D ¼

q
qx

0 0 0 0

cos j
R0

q
qs

sin j
R0

0 0

q
qs

q
qx
�

cos j
R0

0 0 0

0 0 0
q
qx

0

0 0 0
cos j

R0

q
qs

0 0 0
q
qs

q
qx
�

cos j
R0

0 0
q
qx

1 0

0 �
sin j

R0

q
qs

0 1

2
6666666666666666666666666666664

3
7777777777777777777777777777775

(5)

is meant to indicate the congruence operator or the kinematic operator and

uðx; s; tÞ ¼ ½ux us w bx bs�
T (6)

eðx; s; tÞ ¼ ½�0
x �

0
s g0

xs wx ws wxs gxn gsn�
T (7)

denote the displacement vector u and the generalized strain vector e, respectively. The congruence operator D is also
known as the definition operator, because Eqs. (3) in discussion are known as the definition equations too.

2.2. Constitutive equations

The shell material assumed in the following is a functionally graded linear elastic one. Accordingly, the following
constitutive equations relate internal stress resultants and internal couples with generalized strain components on the
middle surface:

Nx

Ns

Nxs

Mx

Ms

Mxs

Tx

Ts

2
666666666666664

3
777777777777775

¼

A11 A12 0 B11 B12 0 0 0

A12 A11 0 B12 B11 0 0 0

0 0 A66 0 0 B66 0 0

B11 B12 0 D11 D12 0 0 0

B12 B11 0 D12 D11 0 0 0

0 0 B66 0 0 D66 0 0

0 0 0 0 0 0 kA66 0

0 0 0 0 0 0 0 kA66

2
666666666666664

3
777777777777775

�0
x

�0
s

g0
xs

wx

ws

wxs

gxn

gsn

2
6666666666666664

3
7777777777777775

(8)

where k is the shear correction factor, which is usually taken as k ¼ 5=6. In Eq. (8), the first three components Nx;Ns;Nxs

are the in-plane meridional, circumferential and shearing force resultants, Mx;Ms;Mxs are the analogous couples, while the
last two Tx; Ts are the transverse shears. In matrix notation, the relation between the generalized stress resultants per unit
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length and the generalized strain components takes the form:

S ¼ Ce (9)

where

C ¼

A11 A12 0 B11 B12 0 0 0

A12 A11 0 B12 B11 0 0 0

0 0 A66 0 0 B66 0 0

B11 B12 0 D11 D12 0 0 0

B12 B11 0 D12 D11 0 0 0

0 0 B66 0 0 D66 0 0

0 0 0 0 0 0 kA66 0

0 0 0 0 0 0 0 kA66

2
666666666666664

3
777777777777775

(10)

is the constitutive operator, also called matrix of the material rigidity and

Sðx; s; tÞ ¼ ½Nx Ns Nxs Mx Ms Mxs Tx Ts�
T (11)

is the vector of internal stress resultants also termed internal force vector. The extensional stiffnesses Aij, the bending
stiffnesses Dij and the bending–extensional coupling stiffnesses Bij are defined as

Aij ¼

Z h=2

�ðh=2Þ
QijðzÞdz; Bij ¼

Z h=2

�ðh=2Þ
QijðzÞzdz; Dij ¼

Z h=2

�ðh=2Þ
QijðzÞz

2 dz (12)

where the elastic constants Qij ¼ QijðzÞ are functions of thickness coordinate z and are defined as

Q11 ¼
EðzÞ

1� n2ðzÞ
; Q12 ¼

nðzÞEðzÞ
1� n2ðzÞ

; Q66 ¼
EðzÞ

2ð1þ nðzÞÞ (13)

It is worth noting that, due to the dependence of elastic constants Qij ¼ QijðzÞ (13) from the thickness coordinate z, in this
work stiffnesses (12) are numerically computed using the quadl MatLab function. In fact, since closed form expressions for
coefficients (12) are not easy to obtain for any kind of the material property variation through the thickness, integrals (12)
are numerically evaluated using recursive adaptive Lobatto quadrature.

It is assumed that the FGM shell is made of a mixture of a ceramic and metallic constituent. The material properties of
the functionally graded shell vary continuously and smoothly in the thickness direction z and are functions of the volume
fractions and properties of the constituent materials. The Young’s modulus EðzÞ, Poisson’s ratio nðzÞ and mass density rðzÞ of
the functionally graded shell can be expressed as a linear combination:

rðzÞ ¼ ðrC � rMÞVC þ rM ; EðzÞ ¼ ðEC � EMÞVC þ EM ; nðzÞ ¼ ðnC � nMÞVC þ nM (14)

where rC ; EC ; nC ;VC and rM ; EM ; nM ;VM represent mass density, Young’s modulus, Poisson’s ratio and volume fraction of
the ceramic and metallic constituent materials, respectively. The volume fractions of all the constituent materials should
add up to unity:

VC þ VM ¼ 1 (15)

In this paper, the ceramic volume fraction VC follows two simple power-law distributions:

FGM1 : VC ¼
1

2
�
z
h

� �p

; FGM2 : VC ¼
1

2
þ
z
h

� �p

(16)

where the volume fraction index p ð0 � p � 1Þ dictates the material variation profile through the functionally graded shell
thickness. It is worth noting that, when p ¼ 0 or 1, the isotropic and homogeneous material is obtained. These material
variations are illustrated in Fig. 2.

2.3. Equations of motion in terms of internal actions

Following the direct approach or the Hamilton’s principle in dynamic version and remembering the Gauss–Codazzi
relations for the shells of revolution considered dR0=dx ¼ cos j, five equations of dynamic equilibrium in terms of internal
actions can be written for the shell element:

qNx

qx
þ
qNxs

qs
þ ðNx � NsÞ

cos j
R0
þ qx ¼ I0 €ux þ I1

€bx

qNxs

qx
þ
qNs

qs
þ 2Nxs

cos j
R0
þ Ts

sin j
R 0
þ qs ¼ I0 €us þ I1

€bs
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Fig. 2. Variation of the ceramic volume fraction VC through the thickness for different values of power-law index p: (a) FGM1 distribution and (b) FGM2

distribution.
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qTx

qx
þ
qTs

qs
þ Tx

cos j
R 0
� Ns

sin j
R0
þ qn ¼ I0 €w

qMx

qx
þ
qMxs

qs
þ ðMx �MsÞ

cos j
R0
� Tx þmx ¼ I1 €ux þ I2

€bx

qMxs

qx
þ
qMs

qs
þ 2Mxs

cos j
R0
� Ts þms ¼ I1 €us þ I2

€bs (17)

where

Ii ¼

Z h=2

�h=2
rðzÞzi 1þ

z
RW

� �
dz; i ¼ 0;1;2 (18)

are the mass inertias. The first three equations (17) represent translational equilibriums along meridional, circumferential
and normal directions, while the last two are rotational equilibrium equations about the x and s directions.

Equations of motion or dynamic equilibrium equations (17) can be written in the operatorial form:

D�S ¼ q�
qK
qt

or D�S ¼ f (19)

where

qðx; s; tÞ ¼ ½qx qs qn mx ms�
T (20)

Kðx; s; tÞ ¼M _u (21)

are the distributed external load and the momentum vectors, respectively, and

M ¼

I0 0 0 I1 0

0 I0 0 0 I1

0 0 I0 0 0

I1 0 0 I2 0

0 I1 0 0 I2

2
6666664

3
7777775

(22)

is the mass matrix, while

_uðx; s; tÞ ¼
q
qt
½ux us w bx bs�

T (23)

is the derivative of the displacement vector u with respect to the variable t, that is the vector velocity.
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The balance operator, also known as the equilibrium operator, assumes the aspect:

D� ¼ �

cos j
R0
þ

q
qx
�

cos j
R0

q
qs

0 0 0 0 0

0
q
qs

2
cos j

R0
þ

q
qx

0 0 0 0
sin j

R0

0 �
sin j

R0
0 0 0 0

cos j
R0
þ

q
qx

q
qs

0 0 0
cos j

R0
þ

q
qx
�

cos j
R0

q
qs

�1 0

0 0 0 0
q
qs

2
cos j

R0
þ

q
qx

0 �1

2
666666666666666664

3
777777777777777775

(24)

2.4. Fundamental equations

The three basic sets of equations, namely the kinematic, equilibrium and constitutive equations may be combined to
give the fundamental system of equations, also known as the governing system equations. Firstly, the
fundamental equations are deducted in the matrix notation. So, if the strain–displacement relations (4) are inserted
into the constitutive equations (9), we have the relationships between stress resultants and the generalized displacement
components:

S ¼ Ce ¼ CDu (25)

When Eqs. (25) are inserted into the equations of motion (19), the fundamental system of equations is derived:

D�CDu ¼ q�
qK
qt

or D�CDu ¼ f (26)

Motion equations in terms of displacements take all the three aspects of the problem of the elastic equilibrium issue into
account. By introducing the fundamental operator, also known as the elasticity operator,

L ¼ D�CD (27)

Eq. (26) can be written as

Lu ¼ q�
qK
qt

or Lu ¼ f (28)

The fundamental system of equations (28) relates the configuration variable u to the source variable q of the phenomenon
under investigation. We can summarize all these aspects of any problem of elastic problem of equilibrium into the scheme
of the physical theories or Tonti’s diagram, which assumes the aspect reported in Fig. 3.

Thus, the complete equations of motion in terms of displacements (28) can be written in the extended form as
(1) Translational equilibrium along the meridional direction x:

A11
q2

qx2
þ

A11 cos j
R0

q
qx
þ A66

q2

qs2
�

A11 cos2 j
R2

0

 !
ux þ �

A11 cos j
R0

þ
A66 cos j

R0

� �
q
qs
þ ðA12 þ A66Þ

q2

qxqs

 !
us

þ
A12 sin j

R0

q
qx
�

A11 sin j cos j
R2

0

 !
wþ B11

q2

qx2
þ

B11 cos j
R0

q
qx
þ B66

q2

qs2
�

B11 cos2 j
R2

0

 !
bx

þ �
B11 cos j

R0
þ

B66 cos j
R0

� �
q
qs
þ ðB12 þ B66Þ

q2

qxqs

 !
bs þ qx ¼ I0 €ux þ I1

€bx (29)

(2) Translational equilibrium along the circumferential direction s:

A11 cos j
R0

þ
A 66 cos j

R0

� �
q
qs
þ ðA12 þ A66Þ

q2

qxqs

 !
ux

þ A66
q2

@x2
þ

A66 cos j
R0

q
qx
þ A11

q2

qs2
�

A66 cos2 j
R2

0

� kA66 sin2 j
R2

0

 !
us

þ
A11 sin j

R0
þ kA66 sin j

R0

� �
qw

qs
þ

B11 cos j
R0

þ
B66 cos j

R0

� �
q
qs
þ B12 þ B66
� � q2

qxqs

 !
bx

þ B66
q2

qx2
þ

B66 cos j
R0

q
qx
þ B11

q2

qs2
�

B66 cos2 j
R2

0

þ kA66 sin j
R0

 !
bs þ qs ¼ I0 €us þ I1

€bs (30)
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Fig. 3. Scheme of physical theories also known as Tonti’s diagram.
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(3) Translational equilibrium along the normal direction z:

�
A12 sin j

R0

q
qx
�

A11 sin j cos j
R2

0

 !
ux �

A11 sin j
R0

þ kA66 sin j
R0

� �
qus

qs

þ kA66
q2

qx2
þ kA66 cos j

R0

q
qx
þ kA66

q2

qs2
�

A11 sin2 j
R2

0

 !
w

þ �
B12 sin j

R0
þ kA66

� �
q
qx
�

B11 sin j cos j
R2

0

þ kA66 cos j
R0

 !
bx

þ �
B11 sin j

R0
þ kA66

� �
qbs

qs
þ qn ¼ I0 €w (31)

(4) Rotational equilibrium about the circumferential direction s:

B11
q2

qx2
þ

B11 cos j
R0

q
qx
þ B66

q2

qs2
�

B11 cos2 j
R2

0

 !
ux þ �

B11 cos j
R0

þ
B66 cos j

R0

� �
q
qs
þ ðB12 þ B66Þ

q2

qxqs

 !
us

þ
B12 sin j

R0
� kA66

� �
q
qx
�

B11 sin j cos j
R2

0

 !
wþ D11

q2

qx2
þ

D11 cos j
R0

q
qx
þ D66

q2

qs2
�

D11 cos2 j
R2

0

� kA66

 !
bx

þ �
D11 cos j

R0
þ

D66 cos j
R0

� �
q
qs
þ ðD12 þ D66Þ

q2

qxqs

 !
bs þmx ¼ I1 €ux þ I2

€bx (32)

(5) Rotational equilibrium about the meridional direction x:

B11 cos j
R0

þ
B66 cos j

R0

� �
q
qs
þ ðB12 þ B66Þ

q2

qxqs

 !
ux þ B66

q2

qx2
þ

B66 cos j
R0

q
qx
þ B11

q2

qs2
�

B66 cos2 j
R2

0

þ kA66 sin j
R0

 !
us

þ
B11 sin j

R0
� kA44

� �
qw

qs
þ

D11 cos j
R0

þ
D66 cos j

R0

� �
q
qs
þ ðD12 þ D66Þ

q2

qxqs

 !
bx

þ D66
q2

qx2
þ

D66 cos j
R0

q
qx
þ D11

q2

qs2
�

D66 cos2 j
R2

0

� kA66

 !
bs þms ¼ I1 €us þ I2

€bs (33)
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2.5. Boundary and compatibility conditions

In the following, three kinds of boundary conditions are considered, namely the fully clamped edge boundary condition
(C), the simply supported edge boundary condition (S) and the free edge boundary condition (F). The equations describing
the boundary conditions can be written as follows:

Clamped edge boundary condition (C):

ux ¼ us ¼ w ¼ bx ¼ bs ¼ 0 at x ¼ 0 or x ¼ x0; 0 � s � s0 (34)

ux ¼ us ¼ w ¼ bx ¼ bs ¼ 0 at s ¼ 0 or s ¼ s0; 0 � x � x0 (35)

Simply supported edge boundary condition (S):

ux ¼ us ¼ w ¼ bs ¼ 0; Mx ¼ 0 at x ¼ 0 or x ¼ x0; 0 � s � s0 (36)

ux ¼ us ¼ w ¼ bx ¼ 0; Ms ¼ 0 at s ¼ 0 or s ¼ s0; 0 � x � x0 (37)

Free edge boundary condition (F):

Nx ¼ Nxs ¼ Tx ¼ Mx ¼ Mxs ¼ 0 at x ¼ 0 or x ¼ x0; 0 � s � s0 (38)

Ns ¼ Nxs ¼ Ts ¼ Ms ¼ Mxs ¼ 0 at s ¼ 0 or s ¼ s0; 0 � x � x0 (39)

In addition to the external boundary conditions, the kinematic and physical compatibility should be satisfied at the common
meridian with s ¼ 0;2pR0, if we want to consider a complete shell of revolution. The kinematic compatibility conditions
include the continuity of displacements. The physical compatibility conditions can only be the five continuous conditions
for the generalized stress resultants. To consider complete revolution conical, cylindrical shells and annular plates
characterized by s0 ¼ 2pR0, it is necessary to implement the kinematic and physical compatibility conditions between the
two meridians with s ¼ 0 and s0 ¼ 2pR0:

Kinematic compatibility conditions:

uxðx;0; tÞ ¼ uxðx; s0; tÞ;usðx;0; tÞ ¼ usðx; s0; tÞ;wðx;0; tÞ ¼ wðx; s0; tÞ;

bxðx;0; tÞ ¼ bxðx; s0; tÞ;bsðx;0; tÞ ¼ bsðx; s0; tÞ
0 � x � x0 (40)

Physical compatibility conditions:

Nsðx;0; tÞ ¼ Nsðx; s0; tÞ;Nxsðx;0; tÞ ¼ Nxsðx; s0; tÞ; Tsðx;0; tÞ ¼ Tsðx; s0; tÞ;

Msðx;0; tÞ ¼ Msðx; s0; tÞ;Mxsðx;0; tÞ ¼ Mxsðx; s0; tÞ
0 � x � x0 (41)

3. Generalized differential quadrature method review

The GDQ method will be used to discretize the derivatives in the governing equations and the boundary conditions. The
GDQ approach was developed by Shu [44] to improve the differential quadrature technique [45,46] for the computation of
weighting coefficients, entering into the linear algebraic system of equations obtained from the discretization of the
differential equation system, which can model the physical problem considered. The differential quadrature methodology
has been applied in many fields of structural mechanics, as shown in the literature [38,47–51]. The essence of the
differential quadrature method is that the partial derivative of a smooth function with respect to a variable is approximated
by a weighted sum of function values at all discrete points in that direction. Its weighting coefficients are not related to any
special problem and only depend on the grid points and the derivative order. In this methodology, an arbitrary grid
distribution can be chosen without any limitation.

The GDQ method is based on the analysis of a high-order polynomial approximation and the analysis of a linear vector
space [37]. For a general problem, it may not be possible to express the solution of the corresponding partial differential
equation in a closed form. This solution function can be approximated by the two following types of function
approximation: high-order polynomial approximation and Fourier series expansion (harmonic functions). It is well known
that a smooth function in a domain can be accurately approximated by a high-order polynomial in accordance with the
Weierstrass polynomial approximation theorem. In fact, from the Weierstrass theorem, if f ðxÞ is a real valued continuous
function defined in the closed interval ½a; b�, then there exists a sequence of polynomials PrðxÞ which converges to f ðxÞ

uniformly as r goes to infinity. In practical applications, a truncated finite polynomial may be used. Thus, if f ðxÞ represents
the solution of a partial differential equation, then it can be approximated by a polynomial of a degree less than or equal to
N � 1, for N large enough. The conventional form of this approximation is

f ðxÞ ffi PNðxÞ ¼
XN
j¼1

djpjðxÞ (42)
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where dj is a constant. Then it is easy to show that the polynomial PNðxÞ constitutes an N-dimensional linear vector space
VN with respect to the operation of vector addition and scalar multiplication. Obviously, in the linear vector space VN , pjðxÞ

is a set of base vectors. It can be seen that, in the linear polynomial vector space, there exist several sets of base polynomials
and each set of base polynomials can be expressed uniquely by another set of base polynomials in the space. Using vector
space analysis, the method for computing the weighting coefficients can be generalized by a proper choice of base
polynomials in a linear vector space. For generality, the Lagrange interpolation polynomials are chosen as the base
polynomials. As a result, the weighting coefficients of the first-order derivative are computed by a simple algebraic
formulation without any restriction on the choice of the grid points, while the weighting coefficients of the second and
higher order derivatives are given by a recurrence relationship.

When the Lagrange interpolated polynomials are assumed as a set of vector space base functions, the approximation of
the function f ðxÞ can be written as

f ðxÞ ffi
XN
j¼1

pjðxÞf ðxjÞ (43)

where N is the number of grid points in the whole domain, xj, j ¼ 1;2; . . . ;N, are the coordinates of grid points in the
variable domain and f ðxjÞ are the function values at the grid points. pjðxÞ are the Lagrange interpolated polynomials, which
can be defined by the following formula:

pjðxÞ ¼
LðxÞ

ðx� xjÞL
ð1ÞðxjÞ

; j ¼ 1;2; . . . ;N (44)

where

LðxÞ ¼
YN
i¼1

ðx� xiÞ; Lð1ÞðxjÞ ¼
YN

i¼1;iaj

ðxj � xiÞ (45)

Differentiating Eq. (43) with respect to x and evaluating the first derivative at a certain point of the function domain, it is
possible to obtain:

f ð1ÞðxiÞ ffi
XN
j¼1

pð1Þ
j
ðxiÞf ðxjÞ ¼

XN
j¼1

Bð1Þ
ij

f ðxjÞ; i ¼ 1;2; . . . ;N (46)

where Bð1Þ
ij

are the GDQ weighting coefficients of the first-order derivative and xi denote the coordinates of the grid points.
In particular, it is worth noting that the weighting coefficients of the first-order derivative can be computed as

pð1Þ
j
ðxiÞ ¼ Bð1Þ

ij
¼

Lð1ÞðxiÞ

ðxi � xjÞL
ð1ÞðxjÞ

; i; j ¼ 1;2; . . . ;N; iaj (47)

From Eq. (47), Bð1Þ
ij
ðiajÞ can be easily computed. However, the calculation of Bð1Þ

ii
is not easy to compute. According to the

analysis of a linear vector space, one set of base functions can be expressed uniquely by a linear sum of another set of base
functions. Thus, if one set of base polynomials satisfy a linear equation like (46), so does another set of base polynomials. As

a consequence, the equation system for determining Bð1Þ
ij

and derived from the Lagrange interpolation polynomials should

be equivalent to that derived from another set of base polynomials, i.e. pjðxÞ ¼ xj�1, j ¼ 1;2; . . . ;N. Thus, Bð1Þ
ij

satisfies the

following equation, which is obtained by the base polynomials pjðxÞ ¼ xj�1, when j ¼ 1:

XN
j¼1

Bð1Þ
ij
¼ 0 ) Bð1Þ

ii
¼ �

XN
j¼1;jai

Bð1Þ
ij
; i; j ¼ 1;2; . . . ;N (48)

Eqs. (47) and (48) are two formulations to compute the weighting coefficients Bð1Þ
ij

. It should be noted that, in the development

of these formulations, two sets of base polynomials were used in the linear polynomial vector space VN . Finally, the n-th order

derivative of function f ðxÞ with respect to x at grid points xi, can be approximated by the GDQ approach:

dnf ðxÞ

dxn

����
x¼xi

¼
XN
j¼1

BðnÞ
ij

f ðxjÞ; i ¼ 1;2; :::;N (49)

where BðnÞ
ij

are the weighting coefficients of the n-th order derivative. Similar to the first-order derivative and according to

the polynomial approximation and the analysis of a linear vector space, it is possible to determine a recurrence relationship
to compute the second and higher order derivatives. Thus, the weighting coefficients can be generated by the following
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recurrent formulation:

BðnÞ
ij
¼ n Bðn�1Þ

ii
Bð1Þ

ij
�
Bðn�1Þ

ij

xi � xj

0
@

1
A; iaj; n ¼ 2;3; . . . ;N � 1; i; j ¼ 1;2; . . . ;N (50)

XN
j¼1

BðnÞ
ij
¼ 0 ) BðnÞ

ii
¼ �

XN
j¼1;jai

BðnÞ
ij
; n ¼ 2;3; . . . ;N � 1; i; j ¼ 1;2; . . . ;N (51)

It is obvious from the above equations that the weighting coefficients of the second and higher order derivatives can be
determined from those of the first-order derivative. Furthermore, it is interesting to note that, the preceding coefficients

BðnÞ
ij

are dependent on the derivative order n, on the grid point distribution xj, j ¼ 1;2; . . . ;N, and on the specific point xi,

where the derivative is computed. There is no need to obtain the weighting coefficients from a set of algebraic equations
which could be ill-conditioned when the number of grid points is large. The merit of the explicit formulae (47), (48), (50)
and (51) is that highly accurate weighting coefficients may be determined for any number of arbitrarily spaced sampling
points. Furthermore, this set of expressions for the determination of the weighting coefficients is so compact and simple
that it is very easy to implement them in formulating and programming, because of the recurrence feature.

3.1. Grid distributions

Another important point for successful application of the GDQ method is how to distribute the grid points. The grid
point distribution also plays an essential role in determining the accuracy, the convergence speed and the stability of the
GDQ method. In this paper, the effects of the grid point distribution will be investigated for the vibration analysis of conical,
cylindrical shells and annular plates. The natural and simplest choice of the grid points through the computational domain
is the one having equally spaced points in the coordinate direction of the computational domain. However, it is
demonstrated that non-uniform grid distribution usually yields better results than equally spaced distribution. Quan and
Chang [52,53] compared numerically the performances of the often-used non-uniform meshes and concluded that the grid
points originating from the Chebyshev polynomials of the first kind are optimum in all the cases examined there. The zeros
of orthogonal polynomials are the rational basis for the grid points. Shu [44] used a choice which gives better results than
the zeros of Chebyshev and Legendre polynomials. Bert and Malik [38] indicated that the preferred type of grid points
changes with problems of interest and recommended the use of Chebyshev–Gauss–Lobatto grid for the structural
mechanics computation. With Lagrange interpolating polynomials, the rule of Chebyshev–Gauss–Lobatto (C–G–L)
sampling points proves efficient for numerical reasons [54] and for such a collocation the approximation error of the
dependent variables decreases as the number of nodes increases. In this study, different grid point distributions are
considered to investigate their effect on the GDQ solution accuracy, convergence speed and stability.

The typical distributions of grid points, which are commonly used in the literature, in normalized form are reported as
follows:

Equally spaced or uniform distribution (Uni)

ri ¼
i� 1

N � 1
; i ¼ 1;2; . . . ;N (52)

Roots of Chebyshev polynomials of the first kind (C I1)

ri ¼
gi � g1

gN � g1
; gi ¼ cos

2i� 1

2N

� �
p

� �
; i ¼ 1;2; . . . ;N (53)

Roots of Chebyshev polynomials of the second kind (C II1)

ri ¼
gi � g1

gN � g1
; gi ¼ cos

ip
N þ 1

� �
; i ¼ 1;2; . . . ;N (54)

Roots of Legendre polynomials (Leg)

ri ¼
gi � g1

gN � g1
; gi ¼ 1�

1

8N2
þ

1

8N3

� �
cos

4i� 1

4N þ 2
p

� �
; i ¼ 1;2; . . . ;N (55)

Quadratic sampling points distribution (Quad)

ri ¼

2
i� 1

N � 1

� �2

i ¼ 1;2; . . . ;
N þ 1

2

�2
i� 1

N � 1

� �2

þ 4
i� 1

N � 1

� �
� 1

 !
i ¼

N þ 1

2

� �
þ 1; . . . ;N

8>>>>><
>>>>>:

(56)
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Fig. 4. C–G–L grid distribution on a conical panel.
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Chebyshev–Gauss–Lobatto sampling points (C–G–L)

ri ¼

1� cos
i� 1

N � 1

� �
p

2
; i ¼ 1;2; . . . ;N (57)

where N is the total number of sampling points used to discretize each direction.
For the numerical computations presented in this paper, the coordinates of grid points ðxi; sjÞ are chosen as

xi ¼ rix0; i ¼ 1;2; . . . ;N; for x 2 ½0; x0�

sj ¼ rjs0; j ¼ 1;2; . . . ;M; for s 2 ½0; s0�
(58)

where ri, rj are two grid distributions of previous ones and N, M are the total number of sampling points used to discretize
the domain in x and s directions, respectively, of the considered shells (Fig. 4).

4. Numerical implementation

In the following, the free vibration of conical, cylindrical shells and annular plates will be studied. In solving the
governing Eqs. (29)–(33), the generalized differential quadrature method is used. This method demonstrates its numerical
accuracy and extreme coding simplicity. So, setting qðx; s; tÞ ¼ 0 and using the method of variable separation, it is possible
to seek solutions that are harmonic in time and whose frequency is o; then, the displacements and the rotations can be
written as follows:

uxðx; s; tÞ ¼ Uxðx; sÞ eiot

usðx; s; tÞ ¼ Usðx; sÞ eiot

wðx; s; tÞ ¼Wðx; sÞ eiot

bxðx; s; tÞ ¼ Bxðx; sÞ eiot

bsðx; s; tÞ ¼ Bsðx; sÞ eiot (59)

where the vibration spatial amplitude values (Uxðx; sÞ, Usðx; sÞ, Wðx; sÞ, Bxðx; sÞ, Bsðx; sÞ) fulfill the fundamental
differential system. The basic steps in the GDQ solution of the free vibration problem of shell type structures are as in
the following:
�
 Discretization of independent variables x 2 ½0; x0�, s 2 ½0; s0� (with x040 and s0 � 2pR0).

�
 Approximation of the spatial derivatives according to GDQ rule.
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�
 Transformation of the differential governing systems (29), (30), (31), (32), and (33) into linear eigenvalue problems for
the natural frequencies. The boundary and compatibility conditions are imposed in the sampling points corresponding
to the boundary. All these relations are imposed point-wise. These resulting equations constitute a well-posed
eigenvalue problem where the number of equations is identical to the number of unknowns.

�
 Solution of the previously stated discrete system in terms of natural frequencies and mode shape components. For each

mode, local values of dependent variables are used to obtain the complete assessment of the deformed
configuration.

4.1. Discretization of motion equations

The GDQ procedure enable one to write the equations of motion in discrete form, transforming each space derivative
into a weighted sum of node values of dependent variables. Each approximate equation is valid in a single sampling point.
The governing equations can be discretized as

(1) Translational equilibrium along the meridional direction x:

A11

XN
k¼1

Bxð2Þ
ik

Ux
kj þ

A11 cos ji

R0i

XN
k¼1

Bxð1Þ
ik

Ux
kj þ A66

XM
m¼1

Bsð2Þ
jm

Ux
im �

A11 cos2 ji

R2
0i

Ux
ij

�
A11 cos ji

R0i
þ

A66 cos ji

R0i

� � XM
m¼1

Bsð1Þ
jm

Us
im þ ðA12 þ A66Þ

XN
k¼1

Bxð1Þ
ik

XM
m¼1

Bsð1Þ
jm

Us
km

þ
A12 sin ji

R0i

XN
k¼1

Bxð1Þ
ik

Wkj �
A11 sin ji cos ji

R2
0i

Wij þ B11

XN
k¼1

Bxð2Þ
ik

Bx
kj þ

B11 cos ji

R0i

XN
k¼1

Bxð1Þ
ik

Bx
kj

þ B66

XM
m¼1

Bsð2Þ
jm

Bx
im �

B11 cos2 ji

R2
0i

Bx
ij �

B11 cos ji

R0i
þ

B66 cos ji

R0i

� � XM
m¼1

Bsð1Þ
jm

Bs
im

þ ðB12 þ B66Þ
XN
k¼1

Bxð1Þ
ik

XM
m¼1

Bsð1Þ
jm

Bs
km ¼ �o

2ðI0Ux
ij þ I1Bx

ijÞ (60)

(2) Translational equilibrium along the circumferential direction s:

A11 cos ji

R0i
þ

A66 cos ji

R0i

� � XM
m¼1

Bsð1Þ
jm

Ux
im þ ðA12 þ A66Þ

XN
k¼1

Bxð1Þ
ik

XM
m¼1

Bsð1Þ
jm

Ux
km þ A66

XN
k¼1

Bxð2Þ
ik

Us
kj

þ
A66 cos ji

R0i

XN
k¼1

Bxð1Þ
ik

Us
kj þ A11

XM
m¼1

Bsð2Þ
jm

Us
im �

A66 cos2 ji

R2
0i

þ kA66 sin2 ji

R2
0i

 !
Us

ij

þ
A11 sin ji

R0i
þ kA66 sin ji

R0i

� � XM
m¼1

Bsð1Þ
jm

Wim þ
B11 cos ji

R0i
þ

B66 cos ji

R0i

� � XM
m¼1

Bsð1Þ
jm

Bx
im

þ ðB12 þ B66Þ
XN
k¼1

Bxð1Þ
ik

XM
m¼1

Bsð1Þ
jm

Bx
km þ B66

XN
k¼1

Bxð2Þ
ik

Bs
kj þ

B66 cos ji

R0i

XN
k¼1

Bxð1Þ
ik

Bs
kj

þ B11

XM
m¼1

Bsð2Þ
jm

Bs
im �

B66 cos2 ji

R2
0i

� kA66 sin ji

R0i

 !
Bs

ij ¼ �o
2ðI0Us

ij þ I1Bs
ijÞ (61)

(3) Translational equilibrium along the normal direction z:

�
A12 sin ji

R0i

XN
k¼1

Bxð1Þ
ik

Ux
kj �

A11 sin ji cos ji

R2
0i

Ux
ij �

A11 sin ji

R0i
þ kA66 sin ji

R0i

� � XM
m¼1

Bsð1Þ
jm

Us
im

þ kA66

XN
k¼1

Bxð2Þ
ik

Wkj þ k
A66 cos ji

R0i

XN
k¼1

Bxð1Þ
ik

Wkj þ kA66

XM
m¼1

Bsð2Þ
jm

Wim �
A11 sin2 ji

R2
0i

Wij

�
B12 sin ji

R0i
� kA66

� �XN
k¼1

Bxð1Þ
ik

Bx
kj �

B11 sin ji cos ji

R2
0i

� kA66 cos ji

R0i

 !
Bx

ij

�
B11 sin ji

R0i
� kA66

� � XM
m¼1

Bsð1Þ
jm

Bs
im ¼ �o

2I0Wij (62)
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(4) Rotational equilibrium about the circumferential direction s:

B11

XN
k¼1

Bxð2Þ
ik

Ux
kj þ

B11 cos ji

R0i

XN
k¼1

Bxð1Þ
ik

Ux
kj þ B66

XM
m¼1

Bsð2Þ
jm

Ux
im �

B11 cos2 ji

R2
0i

Ux
ij

�
B11 cos ji

R0i
þ

B66 cos ji

R0i

� � XM
m¼1

Bsð1Þ
jm

Us
im þ ðB12 þ B66Þ

XN
k¼1

Bxð1Þ
ik

XM
m¼1

Bsð1Þ
jm

Us
km

þ
B12 sin ji

R0i
� kA66

� �XN
k¼1

Bxð1Þ
ik

Wkj �
B11 sin ji cos ji

R2
0i

Wij þ D11

XN
k¼1

Bxð2Þ
ik

Bx
kj

þ
D11 cos ji

R0i

XN
k¼1

Bxð1Þ
ik

Bx
kj þ D66

XM
m¼1

Bsð2Þ
jm

Bx
im �

D11 cos2 ji

R2
0i

þ kA66

 !
Bx

ij

�
D11 cos ji

R0i
þ

D66 cos ji

R0i

� � XM
m¼1

Bsð1Þ
jm

Bs
im þ ðD12 þ D66Þ

XN
k¼1

Bxð1Þ
ik

XM
m¼1

Bsð1Þ
jm

Bs
km

¼ �o2ðI1Ux
ij þ I2Bx

ijÞ (63)

(5) Rotational equilibrium about the meridional direction x:

B11 cos ji

R0i
þ

B66 cos ji

R0i

� � XM
m¼1

Bsð1Þ
jm

Ux
im þ ðB12 þ B66Þ

XN
k¼1

Bxð1Þ
ik

XM
m¼1

Bsð1Þ
jm

Ux
km þ B66

XN
k¼1

Bxð2Þ
ik
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kj

þ
B66 cos ji

R0i

XN
k¼1

Bxð1Þ
ik
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kj þ B11

XM
m¼1

Bsð2Þ
jm

Us
im �

B66 cos2 ji

R2
0i

� kA66 sin ji

R0i

 !
Us

ij

þ
B11 sin ji

R0i
� kA66

� � XM
m¼1

Bsð1Þ
jm

Wim þ
D11 cos ji

R0i
þ

D66 cos ji

R0i

� � XM
m¼1

Bsð1Þ
jm

Bx
im

þ ðD12 þ D66Þ
XN
k¼1

Bxð1Þ
ik

XM
m¼1

Bsð1Þ
jm

Bx
km þ D66

XN
k¼1

Bxð2Þ
ik

Bs
kj þ

D66 cos ji

R0i

XN
k¼1

Bxð1Þ
ik

Bs
kj

þ D11

XM
m¼1

Bsð2Þ
jm

Bs
im �

D66 cos2 ji

R2
0i

þ kA66

 !
Bs

ij ¼ �o
2ðI1Us

ij þ I2Bs
ijÞ (64)

where i ¼ 2;3; . . . ;N � 1, j ¼ 2;3; . . . ;M � 1 and Bxð1Þ
ik

, Bsð1Þ
jm

, Bxð2Þ
ik

and Bsð2Þ
jm

are the weighting coefficients of the first and

second derivatives in x and s directions, respectively. Furthermore, N and M are the total number of grid points in x and
s directions.
4.2. Implementation of boundary and compatibility conditions

Applying the GDQ methodology, the discretized forms of the boundary and compatibility conditions are given as
follows:

Clamped edge boundary condition (C):

Ux
aj ¼ Us

aj ¼Waj ¼ Bx
aj ¼ Bs

aj ¼ 0 for a ¼ 1; N and j ¼ 1;2; . . . ;M

Ux
ib ¼ Us

ib ¼Wib ¼ Bx
ib ¼ Bs

ib ¼ 0 for b ¼ 1; M and i ¼ 1;2; . . . ;N (65)

Simply supported edge boundary condition (S):

Ux
aj ¼ Us

aj ¼Waj ¼ Bs
aj ¼ 0

B11
PN

k¼1
Bxð1Þ

ak
Ux

kj þ
B12 cos ja

R0a
Ux

aj þ B12
PM

m¼1
Bsð1Þ

jm
Us

am þ
B12 sin ja

R0a
Waj for a ¼ 1; N and j ¼ 1;2; . . . ;M

þD11
PN

k¼1
Bxð1Þ

ak
Bx

kj þ
D12 cos ja

R0a
Bx

aj þ D12
PM

m¼1
Bsð1Þ

jm
Bs

am ¼ 0

8>>>>>>><
>>>>>>>:
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Ux
ib ¼ Us

ib ¼Wib ¼ Bx
ib ¼ 0

B12
PN

k¼1
Bxð1Þ

ik
Ux

kb þ
B11 cos ji

R0i
Ux

ib þ B11
PM

m¼1
Bsð1Þ

bm
Us

im þ
B11 sin ji

R0i
Wib for b ¼ 1; M and i ¼ 1;2; . . . ;N

þD12
PN

k¼1
Bxð1Þ

ik
Bx

kb þ
D11 cos ji
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Free edge boundary condition (F):
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Kinematic and physical compatibility conditions:

Ux
i1 ¼ Ux

iM ; Us
i1 ¼ Us

iM ; Wi1 ¼WiM ; Bx
i1 ¼ Bx

iM ; Bs
i1 ¼ Bs

iM
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4.3. Solution procedure

Applying the GDQ procedure enables one to write the equations of motion in discrete form, transforming any space
derivative into a weighted sum of node values of dependent variables. Thus, the whole system of differential equations has
Table 1
Physical parameters used in the analysis of free vibrations of the homogeneous isotropic structures ðp ¼ 1Þ.

Physical parameter Value

Density of mass r ¼ rM 7800 kg/m3

Young’s modulus E ¼ EM 2.1	1011 Pa

Poisson coefficient n ¼ nM 0.3
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Table 2
The first 10 frequencies for the conical panel C–F–F–F.

Frequencies (Hz) GDQ method Abaqus Ansys Nastran Straus Pro/Mechanica

f 1 76.80 77.06 77.12 77.23 76.99 77.06

f 2 106.53 106.84 107.15 106.92 106.89 106.82

f 3 152.17 152.54 152.63 152.82 152.14 152.54

f 4 187.12 187.94 188.31 188.57 187.64 187.92

f 5 248.57 249.37 250.60 250.21 249.39 249.30

f 6 262.12 261.46 262.79 262.36 261.40 261.45

f 7 308.50 308.37 308.97 309.19 307.24 308.34

f 8 345.90 346.86 348.48 348.68 346.45 346.86

f 9 380.15 379.80 382.67 381.47 380.08 379.99

f 10 400.73 401.52 404.08 403.66 401.78 401.50

Table 3
The first 10 frequencies for the cylindrical panel C–F–F–F.

Frequencies (Hz) GDQ method Abaqus Ansys Nastran Straus Pro/Mechanica

f 1 58.32 58.91 58.84 59.01 58.97 58.92

f 2 90.62 91.82 91.94 91.84 91.77 91.79

f 3 146.35 144.59 145.21 144.99 145.08 144.59

f 4 230.72 232.46 233.09 233.32 232.34 232.46

f 5 263.63 266.07 267.33 267.19 266.62 266.07

f 6 278.56 278.88 278.98 278.78 278.47 278.69

f 7 339.43 338.80 342.11 340.93 341.58 338.81

f 8 430.81 427.44 429.12 428.59 427.02 427.25

f 9 489.26 488.07 493.18 491.86 491.01 488.22

f 10 511.30 512.94 517.49 517.13 514.68 513.06

Table 4
The first 10 frequencies for the annular panel C–F–F–F.

Frequencies (Hz) GDQ method Abaqus Ansys Nastran Straus Pro/Mechanica

f 1 60.36 60.37 60.44 60.42 60.40 60.42

f 2 131.86 131.82 132.12 132.22 132.01 132.07

f 3 241.48 241.51 242.79 242.64 242.29 241.75

f 4 278.48 278.50 280.06 279.76 279.36 278.75

f 5 363.05 363.07 365.49 365.56 364.81 363.60

f 6 410.96 410.89 414.08 413.56 412.09 411.89

f 7 544.02 544.04 549.38 548.91 547.93 544.62

f 8 597.35 597.44 603.81 602.43 599.55 599.12

f 9 681.37 681.43 689.79 688.57 686.32 682.03

f 10 754.15 754.21 763.97 763.10 760.43 755.49

Table 5
The first 10 frequencies for the conical dome C–F.

Frequencies (Hz) GDQ method Abaqus Ansys Nastran Straus Pro/Mechanica

f 1 200.69 200.52 200.59 200.74 200.29 200.47

f 2 200.69 200.52 200.59 200.74 200.29 200.47

f 3 221.65 221.28 221.82 221.52 221.26 221.32

f 4 221.65 221.28 221.82 221.52 221.26 221.34

f 5 274.77 275.35 275.35 274.55 274.71 274.96

f 6 274.77 275.35 275.35 274.55 274.71 275.07

f 7 308.30 308.38 308.26 308.24 308.05 308.22

f 8 308.30 308.38 308.26 308.24 308.05 308.22

f 9 341.16 340.08 340.53 340.49 339.52 340.04

f 10 341.16 340.08 340.53 340.49 339.52 340.05
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Table 6
The first 10 frequencies for the cylinder C–F.

Frequencies (Hz) GDQ method Abaqus Ansys Nastran Straus Pro/Mechanica

f 1 146.17 144.82 145.02 144.96 144.88 144.81

f 2 146.17 144.82 145.02 144.96 144.88 144.81

f 3 210.32 208.81 209.58 209.45 209.52 208.82

f 4 210.32 208.81 209.58 209.45 209.52 208.83

f 5 242.55 242.61 242.69 242.43 242.53 242.42

f 6 242.55 242.61 242.69 242.43 242.53 242.42

f 7 366.58 365.52 367.97 367.57 367.72 365.58

f 8 366.58 365.52 367.97 367.57 367.72 365.60

f 9 401.91 403.17 402.74 402.42 402.78 402.45

f 10 412.36 408.28 411.12 409.57 410.08 408.25

Table 7
The first 10 frequencies for the annular plate C–F.

Frequencies (Hz) GDQ method Abaqus Ansys Nastran Straus Pro/Mechanica

f 1 67.03 67.03 67.09 67.07 67.07 67.02

f 2 121.86 121.86 122.02 122.08 122.01 121.99

f 3 121.86 121.86 122.02 122.08 122.01 121.99

f 4 203.17 203.17 203.71 203.63 203.70 203.18

f 5 203.17 203.17 203.71 203.63 203.70 203.18

f 6 283.85 283.85 285.44 285.22 285.19 283.85

f 7 302.85 302.85 304.12 303.81 304.09 302.91

f 8 302.85 302.85 304.12 303.81 304.09 302.91

f 9 340.65 340.65 342.59 342.54 342.33 341.12

f 10 340.65 340.65 342.59 342.54 342.33 341.12

Table 8
The first 10 frequencies for conical shells characterized by different boundary conditions.

Frequencies (Hz) Conical panel Conical dome

C–F–C–F F–S–F–S S–S–F–F C–C S–S C–S

f 1 122.73 74.28 90.92 227.59 208.69 225.59

f 2 135.28 125.33 170.04 227.59 208.69 225.59

f 3 241.48 224.79 232.33 239.71 222.70 234.82

f 4 256.59 258.79 272.43 239.71 222.70 234.82

f 5 287.24 288.70 312.85 275.27 250.33 275.11

f 6 293.42 327.04 324.61 275.27 250.33 275.11

f 7 381.19 360.93 374.71 333.69 318.11 331.96

f 8 421.65 388.22 411.13 333.69 318.11 331.96

f 9 463.67 444.46 454.88 350.59 318.66 350.58

f 10 494.98 480.42 488.36 350.59 318.66 350.58

Table 9
The first 10 frequencies for cylindrical shells characterized by different boundary conditions.

Frequencies (Hz) Cylindrical panel Cylinder

C–F–C–F F–S–F–S S–S–F–F C–C S–S C–S

f 1 204.87 168.18 76.18 360.36 331.15 344.78

f 2 222.97 364.40 188.14 360.36 331.15 344.78

f 3 383.58 407.33 232.26 375.86 348.46 361.52

f 4 441.11 421.67 285.37 375.86 348.46 361.52

f 5 467.98 634.29 428.84 463.29 440.86 451.18

f 6 474.78 651.69 467.63 463.29 440.86 451.18

f 7 715.01 717.89 537.52 523.55 508.07 515.53

f 8 719.14 781.15 573.73 523.55 508.07 515.53

f 9 725.44 792.79 673.55 646.56 596.25 628.74

f 10 736.76 806.95 731.76 646.56 596.25 628.74
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Table 10
The first 10 frequencies for annular plates characterized by different boundary conditions.

Frequencies (Hz) Annular panel Annular plate

C–F–C–F F–S–F–S S–S–F–F C–C S–S C–S

f 1 235.47 13.52 57.68 238.05 115.42 182.68

f 2 249.30 76.326 150.27 246.01 129.88 196.69

f 3 307.53 159.11 233.13 246.01 129.88 196.69

f 4 424.25 167.87 288.57 275.54 175.58 242.03

f 5 592.67 287.65 401.53 275.54 175.58 242.03

f 6 628.39 315.23 456.92 335.89 250.65 319.28

f 7 648.64 399.78 588.04 335.89 250.65 319.28

f 8 729.72 434.01 619.55 427.31 347.67 421.25

f 9 795.34 505.97 650.91 427.31 347.67 421.25

f 10 876.77 604.97 763.19 542.01 432.75 540.29

Mode shape 1 Mode shape 2 Mode shape 3

Mode shape 4 Mode shape 5 Mode shape 6

Fig. 5. Mode shapes for the conical panel C–F–F–F.

Mode shape 1 Mode shape 2 Mode shape 3

Mode shape 4 Mode shape 5 Mode shape 6

Fig. 6. Mode shapes for the cylindrical panel C–F–F–F.
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Mode shapes 1-2 Mode shapes 3-4 Mode shapes 5-6

Mode shapes 7-8 Mode shape 9 Mode shapes 10-11

Fig. 9. Mode shapes for the cylinder C–F.

Mode shapes 1-2 Mode shapes 3-4 Mode shapes 5-6

Mode shapes 7-8 Mode shapes 9-10 Mode shapes 11-12

Fig. 8. Mode shapes for the conical dome C–F.

Mode shape 1 Mode shape 2 Mode shape 3

Mode shape 4 Mode shape 5 Mode shape 6

Fig. 7. Mode shapes for the annular panel C–F–F–F.
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Fig. 11. Convergence and stability characteristics of the first 10 frequencies for the conical panel C–F–F–F using different typical grid distributions.

Fig. 12. Convergence and stability characteristics of the first 10 frequencies for the cylindrical panel C–F–F–F using different typical grid distributions.

Mode shape 1 Mode shapes 2-3 Mode shapes 4-5

Mode shape 6 Mode shapes 7-8 Mode shapes 9-10

Fig. 10. Mode shapes for the annular plate C–F.
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been discretized and the global assembling leads to the following set of linear algebraic equations:

(70)

In the above matrices and vectors, the partitioning is set forth by subscripts b and d, referring to the system degrees of
freedom and standing for boundary and domain, respectively. In this sense, the b-equations represent the discrete boundary
and compatibility conditions, which are valid only for the points lying on constrained edges of the shell; while
Fig. 13. Convergence and stability characteristics of the first 10 frequencies for the annular panel C–F–F–F using different typical grid distributions.

Fig. 14. Convergence and stability characteristics of the first 10 frequencies for the conical dome C–F using different typical grid distributions.
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the d-equations are the equilibrium equations, assigned on interior nodes. In order to make the computation more efficient,
kinematic condensation of non-domain degrees of freedom is performed

ðKdd � KdbðKbbÞ
�1KbdÞdd ¼ o2Mdddd (71)
Fig. 15. Convergence and stability characteristics of the first 10 frequencies for the cylinder C–F using different typical grid distributions.

Fig. 16. Convergence and stability characteristics of the first 10 frequencies for the annular plate C–F using different typical grid distributions.
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The natural frequencies of the structure considered can be determined by solving the standard eigenvalue problem (71). In
particular, the solution procedure by means of GDQ technique has been implemented in a MATLAB code. Finally, the results
in terms of frequencies are obtained using the eigs function of MATLAB program.

It is worth noting that, with the present approach, differing from the finite element method, no integration occurs prior
to the global assembly of the linear system, and this results in a further computational cost saving in favor of the
differential quadrature technique.
Table 11
The first 10 frequencies for the FGM1 functionally graded conical panel C–F–F–F varying the power-law exponent p.

Material properties: EC ¼ 168 GPa, nC ¼ 0:3, rC ¼ 5700 kg=m3, EM ¼ 70 GPa, nM ¼ 0:3, rM ¼ 2707 kg=m3

Frequencies (Hz) p ¼ 0 p ¼ 0:6 p ¼ 1 p ¼ 5 p ¼ 20 p ¼ 50 p ¼ 100 p ¼ 1

f 1 80.36 78.18 77.81 78.96 77.75 76.55 75.97 75.27

f 2 111.46 109.02 108.45 108.27 106.66 105.56 105.04 104.39

f 3 159.21 154.95 154.18 156.11 153.83 151.52 150.43 149.13

f 4 195.79 189.60 188.71 193.10 190.29 186.97 185.35 183.39

f 5 260.08 253.29 252.08 254.47 250.65 247.27 245.63 243.61

f 6 274.26 265.15 263.94 271.26 267.32 262.30 259.86 256.89

f 7 322.79 314.65 313.01 315.45 310.93 306.68 304.69 302.34

f 8 361.92 350.18 348.48 356.75 351.74 345.63 342.64 338.99

f 9 397.75 383.33 381.61 394.62 388.98 381.16 377.29 372.56

f 10 419.29 407.61 405.64 408.06 402.09 399.22 396.29 392.73

Table 12
The first 10 frequencies for the FGM1 functionally graded conical dome C–F varying the power-law exponent p.

Material properties: EC ¼ 168 GPa, nC ¼ 0:3, rC ¼ 5700 kg=m3, EM ¼ 70 GPa, nM ¼ 0:3, rM ¼ 2707 kg=m3

Frequencies (Hz) p ¼ 0 p ¼ 0:6 p ¼ 1 p ¼ 5 p ¼ 20 p ¼ 50 p ¼ 100 p ¼ 1

f 1 209.99 205.96 204.91 203.93 200.79 198.73 197.79 196.69

f 2 209.99 205.96 204.91 203.93 200.79 198.73 197.79 196.69

f 3 231.96 225.52 224.44 227.67 224.29 220.86 219.21 217.23

f 4 231.96 225.52 224.44 227.67 224.29 220.86 219.21 217.23

f 5 287.48 277.93 276.66 284.26 280.15 274.93 272.38 269.28

f 6 287.48 277.93 276.66 284.26 280.15 274.93 272.38 269.28

f 7 322.57 318.18 316.32 309.57 305.04 303.46 302.83 302.14

f 8 322.57 318.18 316.32 309.57 305.04 303.46 302.83 302.14

f 9 356.95 349.48 347.66 347.08 341.87 338.11 336.39 334.35

f 10 356.95 349.48 347.66 347.08 341.87 338.11 336.39 334.35

Table 13
The first 10 frequencies for the FGM1 functionally graded cylindrical panel C–F–F–F varying the power-law exponent p.

Material properties: EC ¼ 168 GPa, nC ¼ 0:3, rC ¼ 5700 kg=m3, EM ¼ 70 GPa, nM ¼ 0:3, rM ¼ 2707 kg=m3

Frequencies (Hz) p ¼ 0 p ¼ 0:6 p ¼ 1 p ¼ 5 p ¼ 20 p ¼ 50 p ¼ 100 p ¼ 1

f 1 61.02 59.24 58.96 60.09 59.19 58.20 57.73 57.16

f 2 94.82 93.14 92.65 91.69 90.29 89.55 89.21 88.81

f 3 153.13 148.51 147.94 152.02 149.49 146.55 145.14 143.43

f 4 241.39 234.79 233.64 236.75 233.27 229.79 228.12 226.11

f 5 275.83 267.06 265.86 272.42 268.37 263.58 261.23 258.36

f 6 291.46 287.85 286.16 279.34 275.23 273.98 273.51 273.00

f 7 355.14 343.22 342.08 354.89 348.80 341.04 337.25 332.65

f 8 450.76 443.06 440.72 436.34 429.63 425.83 424.15 422.21

f 9 511.92 495.89 493.67 505.35 497.87 489.06 484.75 479.49

f 10 534.97 517.96 515.48 527.38 519.85 510.86 506.45 501.09
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5. Applications and results

In the present paragraph, some results and considerations about the free vibration problem of conical, cylindrical shells
and annular plates are presented. The analysis has been carried out by means of numerical procedures illustrated
previously. The details regarding the geometry of the structures considered are indicated below:
�
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f 7

f 8
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Conical panel: Ri ¼ 0:5 m, h ¼ 0:1 m, L ¼ 2 m, a ¼ 40
, W0 ¼ 120
 (Tables 2, 8 and 11);

�
 Conical dome: Ri ¼ 0:5 m, h ¼ 0:1 m, L ¼ 2 m, a ¼ 40
, W0 ¼ 120
 (Tables 5, 8 and 12);

�
 Cylindrical panel: Ri ¼ 1 m, h ¼ 0:1 m, L ¼ 2 m, a ¼ 0
, W0 ¼ 120
 (Tables 3, 9 and 13);

�
 Cylinder: Ri ¼ 1 m, h ¼ 0:1 m, L ¼ 2 m, a ¼ 0
, W0 ¼ 360
 (Tables 6, 9 and 14);
le 14
first 10 frequencies for the FGM1 functionally graded cylinder C–F varying the power-law exponent p.

terial properties: EC ¼ 168 GPa, nC ¼ 0:3, rC ¼ 5700 kg=m3, EM ¼ 70 GPa, nM ¼ 0:3, rM ¼ 2707 kg=m3

quencies (Hz) p ¼ 0 p ¼ 0:6 p ¼ 1 p ¼ 5 p ¼ 20 p ¼ 50 p ¼ 100 p ¼ 1

152.93 150.03 149.29 148.75 146.38 144.80 144.09 143.25

152.93 150.03 149.29 148.75 146.38 144.80 144.09 143.25

220.06 212.94 212.22 219.49 215.71 211.09 208.85 206.12

220.06 212.94 212.22 219.49 215.71 211.09 208.85 206.12

253.78 250.74 249.31 243.43 239.74 238.60 238.17 237.71

253.78 250.74 249.31 243.43 239.74 238.60 238.17 237.71

383.55 370.63 369.46 383.71 377.01 368.49 364.33 359.26

383.55 370.63 369.46 383.71 377.02 368.49 364.33 359.26

420.51 415.47 412.97 402.56 396.70 395.08 394.49 393.88

431.45 420.39 418.46 423.57 416.96 410.69 407.71 404.13

le 15
first 10 frequencies for the FGM1 functionally graded annular panel C–F–F–F varying the power-law exponent p.

terial properties: EC ¼ 168 GPa, nC ¼ 0:3, rC ¼ 5700 kg=m3, EM ¼ 70 GPa, nM ¼ 0:3, rM ¼ 2707 kg=m3

quencies (Hz) p ¼ 0 p ¼ 0:6 p ¼ 1 p ¼ 5 p ¼ 20 p ¼ 50 p ¼ 100 p ¼ 1

63.16 60.46 60.15 62.71 61.97 60.64 59.97 59.16

137.96 132.18 131.49 136.83 135.21 132.38 130.96 129.22

252.66 242.12 240.85 250.52 247.55 242.40 239.83 236.66

291.38 279.25 277.78 288.87 285.44 279.52 276.56 272.92

379.86 364.35 362.42 376.17 371.69 364.18 360.42 355.80

429.98 412.41 410.23 425.82 420.75 412.24 407.98 402.75

569.21 546.17 543.26 563.38 556.66 545.55 539.99 533.16

625.01 599.91 596.71 618.33 610.95 598.88 592.85 585.43

712.91 684.37 680.72 705.14 696.74 683.04 676.19 667.77

789.06 757.90 753.83 779.88 770.56 755.68 748.24 739.09

le 16
first 10 frequencies for the FGM1 functionally graded annular plate C–F varying the power-law exponent p.

terial properties: EC ¼ 168 GPa, nC ¼ 0:3, rC ¼ 5700 kg=m3, EM ¼ 70 GPa, nM ¼ 0:3, rM ¼ 2707 kg=m3

quencies (Hz) p ¼ 0 p ¼ 0:6 p ¼ 1 p ¼ 5 p ¼ 20 p ¼ 50 p ¼ 100 p ¼ 1

70.13 67.13 66.78 69.64 68.81 67.34 66.59 65.68

127.49 122.13 121.49 126.49 124.98 122.35 121.04 119.42

127.49 122.13 121.49 126.49 124.98 122.35 121.04 119.42

212.58 203.65 202.59 210.87 208.36 203.99 201.80 199.12

212.58 203.65 202.59 210.87 208.36 203.99 201.80 199.12

296.99 284.62 283.12 294.46 290.96 284.92 281.89 278.18

316.87 303.70 302.11 314.12 310.38 303.96 300.75 296.80

316.87 303.70 302.11 314.12 310.38 303.96 300.75 296.80

356.42 341.79 339.99 353.06 348.86 341.76 338.21 333.85

356.42 341.79 339.99 353.06 348.86 341.76 338.21 333.85
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�

Fig
pan
Annular panel: Ri ¼ 0:5 m, h ¼ 0:1 m, Re � Ri ¼ 1:5 m, a ¼ 90
, W0 ¼ 120
, where Re is the external radius (Tables 4, 10
and 15);

�
 Annular plate: Ri ¼ 0:5 m, h ¼ 0:1 m, Re � Ri ¼ 1:5 m, a ¼ 90
, W0 ¼ 360
, where Re is the external radius (Tables 7, 10

and 16).

The geometrical boundary conditions for the shell panel are identified by the following convention. For example, the
symbolism C–S–C–F indicates that the edges x ¼ x0, s ¼ s0, x ¼ 0, s ¼ 0 are clamped, simply supported, clamped and free,
respectively. For the complete shell of revolution, for example, the symbolism C–F indicates that the edges x ¼ x0 and x ¼ 0
are clamped and free, respectively. In this case, the missing boundary conditions are the kinematic and physical
compatibility conditions that are applied at the same meridian for s ¼ 0 and s0 ¼ 2pR0.
5.1. Homogeneous isotropic materials: GDQ convergence and stability characteristics

By considering the relations (16), when the power-law exponent is set equal to zero (p ¼ 0) or equal to infinity (p ¼N),
the homogeneous isotropic material is obtained as a special case of functionally graded material. In fact, from Eqs. (16), (15)
. 17. Influence of the power-law exponent p and of the power-law distribution choice on the frequency characteristics of functionally graded conical

el C–F–F–F.
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and (14) it is possible to obtain:

p ¼ 0! VC ¼ 1; VM ¼ 0! rðzÞ ¼ rC ; EðzÞ ¼ EC ; nðzÞ ¼ nC

p ¼ 1! VC ¼ 0; VM ¼ 1! rðzÞ ¼ rM ; EðzÞ ¼ EM ; nðzÞ ¼ nM (72)

The mechanical characteristics for the homogeneous isotropic structures are listed in Table 1. In order to verify the accuracy
of the numerical procedure, some comparisons have also been performed. The first 10 natural frequencies of conical,
cylindrical shells and annular plates are reported in Tables 2–7. One of the aims of this paper is to compare results from the
present analysis with those results obtained with finite element techniques and based on the same shell theory. In
Tables 2–7, the results obtained by the GDQ method are compared with the FEM results obtained with commercial
programs. For the GDQ results reported in Tables 2–7, we have considered the same C–G–L grid distribution with N ¼ 21
and M ¼ 21. For the commercial programs reported in Tables 2–7, we have used shell elements with eight nodes and well-
converged and accurate results were obtained using 50	50 element meshes for the shell panels and 50	100 element
meshes for the complete shells of revolution. It is noteworthy that the results from the present methodology are very close
to those obtained by the commercial programs. As can be seen, the numerical results show an excellent agreement.
Furthermore, it is significant that the computational effort in terms of time and number of grid points is smaller for the
GDQ method results than for the finite element method. Some new results for the considered structures with different
Fig. 18. Influence of the power-law exponent p and of the power-law distribution choice on the frequency characteristics of functionally graded conical

dome C–F.
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boundary conditions are exhibited in Tables 8–10. For these cases, we have also considered the same C–G–L grid
distribution with N ¼ 21 and M ¼ 21. In Figs. 5–7, we have reported the first six mode shapes for the conical, cylindrical and
annular panels characterized by C–F–F–F boundary conditions, while in Figs. 8–10 the mode shapes for the conical dome,
cylinder and annular plate characterized by C–F boundary conditions are illustrated. In particular, for the conical dome,
cylinder and annular plate, there are some symmetrical mode shapes due to the symmetry of the problem considered in 3D
space. In these cases, we have summarized the symmetrical mode shapes only in one figure. The convergence and the
stability of some natural frequencies for the structures under consideration with various grid distributions are shown in
Figs. 11–16. Well convergent results for the frequencies can be obtained, if non-uniform grid point distributions are
considered. In fact, the uniform grid distribution always presents less accurate results in comparison to non-uniform grids.
It can be seen from the figures that the Chebyshev–Gauss–Lobatto (C–G–L) grid point distribution has the most rapid
converging speed and provides more accurate solutions. Instead, the solutions obtained by using Chebyshev I1 (C I1),
Chebyshev II1 (C II1), Legendre (Leg) and Quadratic (Quad) grid point distributions oscillate much more. It is shown that the
solution accuracy of the non-uniform grid distributions stays steady with increasing N ¼ M and does not decrease due to
the numerical instabilities even if N ¼ M becomes too large. For all the treated cases the non-uniform distributions are
stable if the number of grid points increases. As shown in all the figures under consideration, to obtain accurate results for
the higher frequencies the number of sampling points must not be large enough. Figs. 11–13 present the convergence
characteristics of some frequencies for the conical, cylindrical and annular panels characterized by C–F–F–F boundary
Fig. 19. Influence of the power-law exponent p and of the power-law distribution choice on the frequency characteristics of functionally graded cylindrical

panel C–F–F–F.
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conditions, while Figs. 14–16 show the convergence characteristics of some frequencies for the conical dome, cylinder and
annular plate characterized by C–F boundary conditions. The boundary conditions influence the convergence and stability
characteristics. In fact, it can be seen from these figures that the solutions for the conical, cylindrical and annular panels
have the most rapid converging speed and provide more accurate results with a lower number of sampling points. Panel
type structures yield very accurate results for the considered frequencies using the C–G–L grid distribution with
N ¼ M ¼ 17. Instead, the worked solutions for the conical dome, cylinder and annular plate oscillate much more and require
a larger number of sampling points. In these cases, compatibility conditions are introduced and must be implemented to
solve the complete shell of revolution problem. To obtain accurate results for the higher frequencies, it is necessary to use a
C–G–L grid distribution with N ¼ M ¼ 21 sampling points. In fact, these frequencies show the slower convergence rate. It is
worth noting that, using all the non-uniform grid distributions, the methodology presents good stability and converging
characteristics. Furthermore, the accuracy depends on the number of sampling points used.
5.2. Functionally graded materials

In the present paragraph, some results and considerations about the free vibration problem of FGM shells are presented.
Regarding the functionally graded materials, their two constituents are taken to be zirconia (ceramic) and aluminum
(metal), as can be seen from the mechanical characteristics listed in Tables 11–16. The details regarding the geometry of the
Fig. 20. Influence of the power-law exponent p and of the power-law distribution choice on the frequency characteristics of functionally graded cylinder

C–F.
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structures are presented previously. For the GDQ results, we have considered the Chebyshev–Gauss–Lobatto (C–G–L) grid
distribution with N ¼ M ¼ 31. Tables 11–16 illustrate the results obtained using various values of the power-law exponent p

(i.e. p ¼ 0 ceramic rich and p ¼N metallic rich) for the FGM1 power-law distribution. These tables show how by varying
the power-law index p of the volume fraction VC it is possible to modify natural frequencies of FGM shells. The influence of
the index p on the vibration frequencies is shown in Figs. 17–22. As can be seen from the figures, natural frequencies of FGM
shell panels present an intermediate value between the natural frequencies of the limit cases of homogeneous shell panels
of zirconia (p ¼ 0) and of aluminum (p ¼N), as expected. It is interesting to note that the frequencies attain a minimum
value for a shell made only of metal, due to the fact that aluminum has a much smaller Young’s modulus that zirconia. In
particular, it can be noted that the most of frequencies exhibits a fast descending behavior from the ceramic limit case
(p ¼ 0) varying the power-law index from p ¼ 0 to 1, while for values of p greater than unity frequencies increase until a
maximum value. After this maximum, frequencies slowly decrease by increasing the power-law exponent p and tend to the
metallic limit case (p ¼N). This is expected because the more p increases the more the ceramic content is low and the FGM
shell approaches the case of the fully metallic shell. The behavior described above is not present in all the frequencies and
depends on the type of vibration mode. It is worth noting that in Figs. 18–20 some frequencies do not present the
characteristic knee described above, but decrease gradually from the ceramic limit case (p ¼ 0) to the metallic limit case
(p ¼N) by increasing the power-law exponent p. In particular, the types of vibration mode that present this monotone
gradually decrease of frequency are torsional and bending mode shapes, while the circumferential and radial mode shapes
are characterized by a knee, as can be seen by comparing the mode shapes in Figs. 5–10 with Figs. 17–22. For examples, the
frequencies f7, f8 of the conical dome of Fig. 18 and f5, f6 of the cylinder of Fig. 20 correspond to bending mode shapes as can
be observed from Figs. 8 and 9, respectively, while the frequency f9 of the cylinder of Fig. 20 correspond to a torsional mode
shape as can be inferred from Fig. 9.

Furthermore, Figs. 17–22 also show the effect of the power-law distribution choice on the frequency parameters. As can
be seen, the FGM1 power-law frequency curves are always over the FGM2 power-law frequency curves for any value of p.
Moreover, the distance between these two curves increases with increasing the shell thickness because of the curvature of
the shell. In fact, for curved shells it is important from dynamic vibration point of view to know if the top surface of the
shell ðz ¼ h=2Þ is ceramic or metallic rich and if the bottom surface ðz ¼ �h=2Þ is metallic or ceramic rich.
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6. Conclusions

The generalized differential quadrature method has been used to study the free vibration analysis of functionally graded
conical, cylindrical shells and annular plates. The adopted shell theory is the first-order shear deformation theory.
Complete revolution shells are obtained as special cases of shell panels by satisfying the kinematic and physical
compatibility.

In this study, ceramic–metallic graded shells of revolution with two different power-law variations of the volume
fraction of the constituents in the thickness direction have been considered. The numerical results have shown the
influence of the power-law exponent and of the power-law distribution choice on the free vibrations of functionally graded
shells considered. For shells with zero curvature such as annular panels and plates, it has been shown that the power-law
distribution choice on the free vibrations does not produce any effect from the dynamic vibration point of view. On the
contrary, for curved shells such as cylindrical and conical panels and shells, it has been observed that the influence of the
distribution choice is marked and can be considered from the structural design point of view. In general, it can be
concluded that the frequency vibration of functionally graded shells depends on the type of vibration mode, thickness,
power-law distribution, power-law exponent and curvature of the structure.

For the isotropic and homogeneous special case, numerical solutions has been compared with the ones obtained using
commercial programs such as Abaqus, Ansys, Nastran, Straus, Pro/Mechanica. The comparisons conducted with FEM codes
confirm how GDQ simple numerical method provides accurate and computationally low cost results for all the structures
considered. Detailed convergence and comparison studies conducted have demonstrated the accuracy and stability of the
proposed methodology.
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